

17CS73

Seventh Semester B.E. Degree Examination, June/July 2023 Machine Learning

Time: 3 hrs.

1

2

5

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Define Machine Learning. Explain with examples, why Machine Learning is important.

(06 Marks)

- b. Describe the following problems with respect to Task, Performance and Experience.
 - a) A Checkers learning problem.
 - b) A Handwritten recognition learning problem.
 - c) A Robot driving learning problem.

(06 Marks)

c. Write FIND - S Algorithm and explain with example given below :

Example	Sky	Air Temp	Humidity	Wind	Water	Forecast	Enjoy sport	
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes	
2	Sunny	Warm	High	Strong	Warm	Same	Yes	
3	Rainy	Cold	High	Strong	Warm	Change	No	
4	Sunny	Warm	High	Strong	Cool	Change	Yes	

(08 Marks)

(04 Marks)

(10 Marks)

(06 Marks)

OR

a. Explain in detail the Inductive Bias of Candidate Elimination algorithm. (08 Marks)
b. Write the Candidate Elimination algorithm and illustrate with example. (12 Marks)

Module-2

- 3 a. Explain representation of decision tree with example.
 - b. Describe the ID3 Algorithm for decision tree learning with example.
 - c. What are issues in learning decision trees?

OR

- 4 a. Consider the following set of training examples :
 - i) What is entropy of this collection of training example with respect to the target function classification?
 - ii) What is the information gain of a_2 and a_1 relative to these training examples?

Instance	1	2	3	4	5	6	7	8	9
a	Т	Т	Т	F	F	F	F	T	F
a ₂	T	Т	F	F	T	T	F	F	Т
Classification	+	+	-	+	-	1	-	+	-

b. Discuss Inductive Bias in Decision Tree Learning.

(12 Marks) (08 Marks)

(04 Marks)

Module-3

- a. Explain the concept of a Perceptron with a neat diagram. (08 Marks)b. Write a note on :
 - i) Perceptron training rule ii) Gradient descent and Delta rule. (08 Marks)
 - c. Differentiate between Gradient Descent and Stochastic Gradient Descent.

1 of 2

OR

6	a.	Derive the Back Propagation Rule.	(10 Marks)				
	b.	Define Maximum A Posteriori (MAP) and Maximum Likelihood (ML) Hypoth	esis. Derive				
		the relation for h _{MAP} and h _{ML} using Bayesian Theorem.	(10 Marks)				
		Module-4					
7	a.	Explain Brute Force Bayes concept learning.	(06 Marks)				
	b.	Discuss Maximum Likelihood and Least Square Error Hypothesis.	(06 Marks)				
	c.	Describe the concept of MDL. Obtain the equation for h _{MDL} .	(08 Marks)				
		OR					
8	a.	Explain Naïve Bayes classifier with an example.	(10 Marks)				
	b.	Explain the concept of EM Algorithm. Discuss what are Gaussian Mixtures.	(10 Marks)				
		Module-5					
9	a.	Define the following terms :					
		i) Sample error ii) True error iii) Random variable					
		iv) Expected value v) Variance vi) Standard Deviation.	(12 Marks)				
	b.	Explain K – Nearest Neighbor learning algorithm.	(08 Marks)				
		OR					
10	a.	Explain Locally Weighted Linear Regression.	(06 Marks)				
	b.	Write Reinforcement Learning problem characteristics. (06 Mar					
	c.	Explain the Q Function and Q Learning Algorithm assuming deterministic	rewards and				
		actions with example.	(08 Marks)				

actions with example.

. 2 of 2